Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter.

نویسندگان

  • R Wender
  • A M Brown
  • R Fern
  • R A Swanson
  • K Farrell
  • B R Ransom
چکیده

We tested the hypothesis that astrocytic glycogen sustains axon function during and enhances axon survival after 60 min of glucose deprivation. Axon function in the rat optic nerve (RON), a CNS white matter tract, was monitored by measuring the area of the stimulus-evoked compound action potential (CAP). Switching to glucose-free artificial CSF (aCSF) had no effect on the CAP area for approximately 30 min, after which the CAP rapidly failed. Exposure to glucose-free aCSF for 60 min caused irreversible injury, which was measured as incomplete recovery of the CAP. Glycogen content of the RON fell to a low stable level 30 min after glucose withdrawal, compatible with rapid use in the absence of glucose. An increase of glycogen content induced by high-glucose pretreatment increased the latency to CAP failure and improved CAP recovery. Conversely, a decrease of glycogen content induced by norepinephrine pretreatment decreased the latency to CAP failure and reduced CAP recovery. To determine whether lactate represented the fuel derived from glycogen and shuttled to axons, we used the lactate transport blockers quercetin, alpha-cyano-4-hydroxycinnamic acid (4-CIN), and p-chloromercuribenzene sulfonic acid (pCMBS). All transport blockers, when applied during glucose withdrawal, decreased latency to CAP failure and decreased CAP recovery. The inhibitors 4-CIN and pCMBS, but not quercetin, blocked lactate uptake by axons. These results indicated that, in the absence of glucose, astrocytic glycogen was broken down to lactate, which was transferred to axons for fuel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axon conduction and survival in CNS white matter during energy deprivation: a developmental study.

We investigated the postnatal development of axon sensitivity to the withdrawal of oxygen, glucose, or the combined withdrawal of oxygen + glucose in the isolated rat optic nerve (a CNS white matter tract). Removal of either oxygen or glucose for 60 min resulted in irreversible injury in optic nerves from adult rats, assessed by loss of the evoked compound action potential (CAP). Optic nerves a...

متن کامل

Contribution of glycogen in supporting axon conduction in the peripheral and central nervous systems: the role of lactate

The role of glycogen in the central nervous system is intimately linked with the glycolytic pathway. Glycogen is synthesized from glucose, the primary substrate for glycolysis, and degraded to glucose-6-phosphate. The metabolic cost of shunting glucose via glycogen exceeds that of simple phosphorylation of glucose to glucose-6-phosphate by hexokinase; thus, there must be a metabolic advantage i...

متن کامل

Astrocyte glycogen and brain energy metabolism.

The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferr...

متن کامل

Regulation of oligodendrocyte development and myelination by glucose and lactate.

In the gray matter of the brain, astrocytes have been suggested to export lactate (derived from glucose or glycogen) to neurons to power their mitochondria. In the white matter, lactate can support axon function in conditions of energy deprivation, but it is not known whether lactate acts by preserving energy levels in axons or in oligodendrocytes, the myelinating processes of which are damaged...

متن کامل

Glial glycogen stores affect neuronal survival during glucose deprivation in vitro.

Glia perform several energy-dependent functions that may aid neuronal survival under pathological conditions. Glycogen is the major energy reserve in brain, and it is localized almost exclusively to astrocytes. Using murine cortical cell cultures containing both glia and neurons, we examined the effect of altered glial glycogen stores on neuronal survival following glucose deprivation. As previ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 20 18  شماره 

صفحات  -

تاریخ انتشار 2000